Note on the cortex of some exponential Lie groups
نویسنده
چکیده
In this paper, we built a family of 4d-dimensional two-step nilpotent Lie algebras (gd)d≥2 so that the cortex of the dual of each gd is a projective algebraic set. We also give a complete description of the cortex of the exponential connected and simply connected Lie group G = R o R.
منابع مشابه
Harmonicity and Minimality of Vector Fields on Lorentzian Lie Groups
We consider four-dimensional lie groups equipped with left-invariant Lorentzian Einstein metrics, and determine the harmonicity properties of vector fields on these spaces. In some cases, all these vector fields are critical points for the energy functional restricted to vector fields. We also classify vector fields defining harmonic maps, and calculate explicitly the energy of t...
متن کاملEinstein structures on four-dimensional nutral Lie groups
When Einstein was thinking about the theory of general relativity based on the elimination of especial relativity constraints (especially the geometric relationship of space and time), he understood the first limitation of especial relativity is ignoring changes over time. Because in especial relativity, only the curvature of the space was considered. Therefore, tensor calculations should be to...
متن کاملACTION OF SEMISIMPLE ISOMERY GROUPS ON SOME RIEMANNIAN MANIFOLDS OF NONPOSITIVE CURVATURE
A manifold with a smooth action of a Lie group G is called G-manifold. In this paper we consider a complete Riemannian manifold M with the action of a closed and connected Lie subgroup G of the isometries. The dimension of the orbit space is called the cohomogeneity of the action. Manifolds having actions of cohomogeneity zero are called homogeneous. A classic theorem about Riemannian manifolds...
متن کاملA Miniature CCA2 Public key Encryption scheme based on non-Abelian factorization problems in Lie Groups
Since 1870s, scientists have been taking deep insight into Lie groups and Lie algebras. With the development of Lie theory, Lie groups have got profound significance in many branches of mathematics and physics. In Lie theory, exponential mapping between Lie groups and Lie algebras plays a crucial role. Exponential mapping is the mechanism for passing information from Lie algebras to Lie groups....
متن کاملSums of Adjoint Orbits
We show that the sum of two adjoint orbits in the Lie algebra of an exponential Lie group coincides with the Campbell-Baker-Hausdorff product of these two orbits. Introduction N. Wildberger and others have recently investigated the structure of the hypergroup of the adjoint orbits in relation with the class hypergroup of compact Lie groups. A generalization of the notion of this type of hypergr...
متن کامل